Multiple dimensions:
The one dimensional DG scheme for $u_{t}+a u_{x}=0$ is

$$
\int_{\Omega_{j}} \phi\left(u_{t}+a u_{x}\right) d x=
$$

Weak form:
Strong form (no require met on ϕ)

$$
\int_{\Omega_{j}} \phi_{t}-\operatorname{au} \phi_{x} d x=-\left[a u \phi_{x_{j}}^{x_{d+t}}\right.
$$

what are the outward point ting nor mall?

$$
x_{j} \Omega_{j} x_{j+1}
$$

So we have

$$
\int_{\Omega_{g}} d u_{t}-a u \phi_{x} d x=-\int_{\partial \Omega_{\gamma}}
$$

In multiple (2D say) dimension we have the advection equation

$$
u_{t}(\bar{x}, t)+\nabla \cdot f(u(\bar{x}, t), \bar{x}, t)=0
$$

We will expand

$$
u(\bar{x}, t)=\sum_{k=0}^{q} \sum_{l=0}^{q} \hat{u}_{k l}(t) \phi_{k}(r) \phi_{l}(s)
$$

The schemes are derived in the same way bub now we use higher dimension versions of fundamental thu of calculus Gakss/Dirergence the.

Divergence theorem

$$
\underbrace{\iiint}_{n \text { dims }} \nabla \cdot F d \Omega=\iint_{n-1 \text { dims }} \bar{n} \cdot \bar{f} d S
$$

on in our case

$$
\iint_{\Omega_{\gamma}} \phi \nabla \cdot f \alpha \Omega=\int_{\partial \Omega_{j}} \phi \bar{n} \cdot \bar{f} d s-\iint_{\Omega_{j}} \nabla \phi \cdot \bar{f} d \Omega
$$

Results in the schemes
Weave

$$
\iint_{\Omega_{j}} \phi u_{t}-\nabla \phi \cdot \bar{f} d g_{j}=-\int_{\partial \Omega_{j}}(\bar{n} \cdot \stackrel{F}{ })^{*} \phi d s
$$

Strong

$$
\iint_{\Omega_{j}} \phi u_{t}+\phi \nabla \cdot \bar{F} d \Omega_{j}=\int_{\partial \Omega_{j}} \bar{n} \cdot\left(\bar{f}-f^{*}\right) \phi d s
$$

$$
\frac{\iint_{\Omega_{j}} \phi u_{t}-\nabla \phi \cdot \bar{F} d s_{y}=-\int(\bar{n} \cdot \bar{F})^{*} \phi d s}{H_{j-}}, \left\lvert\, \begin{aligned}
& \bar{f}^{*}(a, b)=\frac{\bar{f}(a)+\bar{f}(b)}{2}+\frac{c}{2} \hat{n}(a-b) \\
& \Omega_{j} \text { to gel from } \Omega ? \\
& C=\max _{u \in[a, b]}\left|n_{x} \frac{\partial f_{1}}{\partial x}+n_{y} \frac{\partial f_{2}}{\partial y}\right| \\
& \text { Lax-Friedrich flux. }
\end{aligned}\right.
$$

Find a function of r and s that is zero at the top corner and at the lower risk corner and one in the bottom left.

$$
\begin{aligned}
& \bar{X}=-\frac{r+s}{2} \bar{V}_{1}+\frac{r+1}{2} \bar{V}_{2}+\frac{B+1}{2} \bar{V}_{3} \\
& \int_{\Omega} \int_{\Omega} f(x, y) d x d y=\iint_{\Omega} f(x(r, s), y(r, s)) J(r, s) d r d s
\end{aligned}
$$

The Jacobian is the scaling of a infinitesend elemal (a determinant)

How are $d x$, $d y$ relaled to $d r, d s ?$ Use chain rule.

