

Today: Get an account at
re.colorado.edu

1. Use your idubikey and 2-factor auth The smart phone app Duo is easyto use and more convenient then gelling a token.

Let me know whin you are done when everyone are dove I will request an allocation for the class.

Project: Group 1: Ferro Fluids Navierstohes.
Group 2: Spread of polutabt from $\delta\left(\bar{x}-\bar{x}_{s}\right)$
Group 3: Compressible Euler + Les type model.
2: Eq: $\quad S_{t}+\nabla:(\bar{u} \rho)=S(t) \delta\left(\bar{x}-\overline{x_{s}}\right)$

DG Systems and Multiple dimensions this week
Recall the scalar problem $u_{t}+a u_{x}=0$ $\int^{x_{j+1}} \phi u_{t}-a \phi_{x} u d x=-a \phi u^{*}\left(x_{j+1}\right)+a \phi u^{*}\left(x_{j}\right)$ $x_{j}=x_{R}$ (just to the Right of $x_{j}^{\prime \prime}$)
add on

$$
\begin{aligned}
& \text { ld on } \\
& \int_{x_{j-1}=x_{L}\left(\text { "just to ma helot } x_{j}\right)} d u_{t}-a \phi_{k} u d x=-a \phi u^{*}\left(x_{j}\right)+a \phi u^{*}\left(x_{j-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \int \phi u_{t}^{R}-a \phi_{x} u^{R} d x=-a \phi u^{*}\left(x_{j+1}\right)+a \phi u^{*}\left(x_{j}\right) \text { Ignore pinh } \\
& x_{R} \\
& \int \phi u_{t}^{x_{L}}-a \phi_{\alpha} u^{L} d x=-a \phi u^{*}\left(x_{j}\right)+a \phi u^{*}\left(x_{j-1}\right) \\
& \phi \rightarrow u \text { and } \int_{a}^{b} u_{x} u d x=\frac{1}{2} u^{2}(b)-\frac{1}{2} u^{2}(a) \\
& \int u u_{t} d x=a u^{R} u^{*}-a u^{L} u^{*}-\frac{1}{2} a u^{R} u^{R}+\frac{1}{2} a u^{L} u^{L}\binom{\text { Iqnorea }}{\text { Oonkrwing }} \\
& =a\left(\left(u^{R}-u^{L}\right) u^{*}+\frac{u^{L} u^{L}}{2}-\frac{u^{R} u^{R}}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& a\left(\left(u^{R}-u^{L}\right) u^{*}+\frac{u^{L} u^{L}}{2}-\frac{u^{R} u^{R}}{2}\right)=\left\{u^{*}=\beta u^{L}+(1-\beta) u^{R}\right\} \\
& a\left(\left(u^{R}-u^{L}\right) \beta u^{R}+\left(u^{R}-u^{L}\right)(1-\beta) u^{R}+\frac{u^{2} u^{R}-\frac{u^{R} u^{R}}{2}}{2}\right)= \\
& a(u^{L} u^{L}\left(\frac{1}{2}-\beta\right)+u^{R} u^{R}(\underbrace{\frac{-1}{2}+1-\beta}_{y^{1 / 2-\beta}})+u^{L} u^{R}(\beta+\beta-1)=
\end{aligned}
$$

$a\left(u^{L}-u^{R}\right)^{2}\left(\frac{1}{2}-\beta\right) \quad$ So if $a<0, \beta<\frac{1}{2}<0$.

System 1 D How to choose flux?
Start with $\rho_{t}+u_{x}=0$, $\rho_{\text {is density }}$ and $u_{\text {is }}$
$u_{t}+\rho_{x}=0$ of a guiscent fluid.

$$
\frac{\partial}{\partial t}\binom{\rho}{u}+\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \frac{\partial}{\partial x}\binom{\rho}{u}=\binom{0}{0} \Leftrightarrow \bar{w}_{t}+A \bar{w}_{x}=\bar{o}
$$

what does upwind mean now? in 2 variables.
$\begin{array}{ll}\text { Note: } & \\ \left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \text { has eigen vectors } & \lambda_{1}=1, \bar{V}_{1}=\left(\begin{array}{l}1 \\ 1 \\ \text { values }\end{array}\right. \\ & \lambda_{2}=-1, \bar{V}_{2}=\binom{1}{-1}\end{array}$

$$
\begin{aligned}
& \lambda_{1}=1, \bar{v}_{1}=\binom{1}{1} \frac{1}{\sqrt{2}} \\
& \lambda_{2}=-1, \bar{V}_{2}=\binom{1}{-1} \frac{1}{\sqrt{2}}
\end{aligned}
$$

let $S=\left(\bar{v}_{1} \bar{v}_{2}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$ and introduce

$$
\begin{aligned}
& \binom{q}{r}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{\rho}{u}=\frac{1}{\sqrt{2}}\binom{\rho+u}{\rho-u} \begin{array}{l}
\text { Characteristic } \\
\text { variables }
\end{array} \\
& \frac{\partial}{\partial t}\binom{\rho}{u}+\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \frac{\partial}{\partial x}\binom{\rho}{u}=0 \Leftrightarrow \frac{\partial}{\partial t} S^{-1}\binom{q}{r}+\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) S^{-1} \frac{\partial}{\partial x}\binom{q}{r}=0
\end{aligned}
$$

multiply with S

$$
\left.\left.\frac{\partial}{\partial t}\binom{q}{r}+S\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) S^{-1} \frac{\partial}{\partial x} \right\rvert\, \begin{array}{l}
q \\
r
\end{array}\right)=0 \Leftrightarrow
$$

$$
q_{t}+q_{x}=0, \left\lvert\, \frac{0}{D} q=0\right.
$$

$$
r_{t}-r_{x}=0
$$

$\overbrace{\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)}$ Sdiayonalizes A.

We have Mus reduced the problem to two scalar eq and can write down a DG scheme

$$
\begin{array}{ll}
\int_{x_{j}}^{x+1} \phi q_{t}-\phi_{x} q d x=-\left[\phi q_{x_{j}}^{*}\right]^{x_{d+1}}, & q^{*}=\beta_{1} q^{+}+\left(1-\beta_{1}\right) q^{-}, \\
\int_{x}^{x+1} \psi r_{t}+\psi_{x} r d x=+\left[\psi r_{x}^{*}\right]_{x}^{x_{d+1}}, & r^{*}=\beta_{2} r^{+}+\left(1-\beta_{2}\right) r^{-},
\end{array}
$$

Choose β_{1} and β_{2} by the same analysis as before.

This approach works in ID and one cam convert to $9, u$ whenever needed.
In 2D the characteristics will be different and we cannot (typically) work in characteristic variables.

Let's try to work directly with

$$
\bar{w}_{t}+A \bar{w}_{x}=0
$$

Suppose that all eigenvalues of A are real and that the is a full set of eigenvectors (The problem is hyperbolic)

Also assume that $\max \{|\lambda|\} \leqslant \lambda_{\text {LE }}$ then We con use the scheme:

$$
\int_{x_{j}}^{x_{d+1}} \bar{\phi}^{\top} \bar{w}_{t} d x+\int_{x_{j}}^{x_{d+1}} \Phi^{\top} A \bar{w}_{x} d x=\left[\bar{\phi}^{\top}\left(A\left(\bar{w}-\bar{w}^{*}\right)\right)\right]_{x_{j}}^{x_{j}}
$$

where $A \bar{w}^{-*}=A\left(\frac{\bar{w}^{+}+\bar{w}}{2}\right)+\frac{\lambda_{L F}}{2}\left(n^{-} \bar{w}^{-}+n^{+} \bar{w}^{+}\right)$

$$
=A\{\{\bar{w}\}\}+\frac{\lambda_{L P}}{2}[[\bar{w}]]
$$

Here" - "means on my dem and " + " on neighbour.

Ex: $\bar{w}=\binom{s}{u}, \bar{\phi}=\in\left\{\binom{1}{0},\binom{x}{0},\binom{x^{2}}{0} \ldots\binom{0}{1},\binom{0}{x}, \ldots\right\} \ldots\binom{\phi}{\psi}_{x}$ First, $\int_{x_{j}}^{x_{\text {du }}}(\phi, 0)\binom{\sigma_{t}}{n_{t}} d x+\int_{y_{j}}^{x_{k n}}(\phi, 0)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{Q_{x}}{u_{x}} d x=\left[(\phi, 0)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left[\binom{\rho}{u} \cdot\binom{\alpha^{*}}{u^{*}}\right]\right]^{x}$

$$
\int_{x_{j}}^{x_{j+1}} \phi s_{t}+\phi u_{x} d x=\left[\phi\left(u-u^{*}\right)\right]_{x_{j}}^{x_{d+1}}
$$

Same for other eq.

$$
\begin{aligned}
& \text { Same for other eq. } \\
& \int_{x_{\gamma}}^{x_{j 1}} \psi u_{t}+\psi s_{x} d x=\left[\psi\left(\rho-g^{*}\right)\right]_{x_{j}}^{x_{j+1}}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{\substack{x_{j}+1} s_{t}+\phi u_{x} d x=\left[\phi\left(\frac{u}{2}-u^{*}\right)\right]_{x_{j}}^{x_{d}}}^{x_{d+1}} \\
& \int_{x_{j}}^{x_{j}} \psi u_{t}+\psi s_{x} d x=\left[\psi\left(\frac{\rho-g^{*}}{2}\right)\right]_{x_{j}}^{x_{d+1}}
\end{aligned}
$$

Here Ichoose

$$
n^{-}=-1
$$

Adding up contri butions we find on elemet 8

$$
\begin{aligned}
& \text { Adding up contri butions we kind on elemut } \delta^{8}\left(\frac{\rho^{-}}{2}-u^{*}\right)-\rho^{+}\left(\frac{u^{-}}{2}-u^{*}\right)+u^{+}\left(\frac{\rho^{+}}{2}-\rho^{*}\right)-u^{-}\left(\frac{\rho^{*}}{2}\right) \\
& \quad=\rho^{+} u^{+}-\overline{\rho^{-}}+u^{*}\left(\overline{\left.\rho^{-}-\rho^{+}\right)+\rho^{*}\left(u^{-}-u^{+}\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \rho^{+} u^{+}-\rho^{-} u^{-}+u^{*}\left(\rho^{-}-\rho^{+}\right)+\rho^{*}\left(u^{-}-u^{+}\right) \\
& g^{*}=\frac{1}{2}\left(Q^{+}+\rho^{-}\right)+\frac{\lambda_{\text {max }}}{2}\left(n^{-} u^{-}+n^{+} u^{+}\right)=\frac{1}{2}\left(\rho^{+}+\rho^{-}+n^{+}-n^{-}\right) \\
& u^{*}=\frac{1}{2}\left(u^{+}+u^{-}\right)+\frac{\lambda_{\text {max }}}{2}\left(\bar{n}^{-} \rho^{-}+n^{+} \rho^{+}\right)=\frac{1}{2}\left(u^{+}+u^{-}+\rho^{+}-\rho^{-}\right) \\
& \rho^{+} u^{+}-\rho^{-} u^{-}+\frac{1}{2}\left(\rho^{-}-\rho^{+}\right)\left[\left(\rho^{+}-\rho^{-}\right)+u^{+}+u^{-}\right]+\frac{1}{2}\left(u^{-}-u^{+}\right)\left[\left(u^{+}-u^{-}\right)+\rho^{+}+\rho^{-}\right] \\
& =\rho^{+} u^{+}-\rho^{-} u^{-}+\frac{-}{2} \varphi^{+}+\frac{1-\rho^{-} u}{2}-\frac{\rho^{+} u^{+}}{2}-\frac{\rho^{+} u}{2}-\frac{1}{2}\left(\rho^{-}-\rho^{+}\right)^{2}
\end{aligned}
$$

Higher order equations. (Basics)
Consider the heat eq.

$$
\begin{aligned}
& u_{t}=u_{x x}, \quad-\pi \leq x \leq \pi, t \geqslant 0 \\
& u(x, 0)=\sin (x)
\end{aligned}
$$

has solution $u(x, t)=e^{-t} \sin (x)$.
To make this look lime a first ord eq. we write $\frac{\partial}{\partial t} u=\frac{\partial}{\partial x} u_{x}$

$$
\frac{\partial}{\partial t} u=\frac{\partial}{\partial x} u_{x} \text {. Tutroducing } q=u_{x}
$$

we have

$$
\begin{align*}
& \left.\begin{array}{l}
u_{t}=q_{x} \\
q=u_{x}
\end{array}\right\} \quad \int \phi u_{t}-\phi q_{x} d x=-\left[\left(q-q^{*}\right)\right] \tag{1}\\
& \int \psi q d x=\int \varphi u_{x} \tag{2}
\end{align*}
$$

we ty to solve 2 first as this is a linear system of eq. the we compute u_{t} to evolve question: This is a heat of, how should we choose q^{*} ?

The "natural choice" $q^{*}=\{\{q\}\}$ does not work! this was very surpris ing and was a mystery for some time. The cental flax on q^{*} by itself is veally unstable but often looks stabk (at though there is no convergence) what to do?

Another formulation

$$
\begin{aligned}
& \int_{\Omega_{j}} \phi u_{t}^{\mu}=\int_{\Omega_{j}} \phi q_{x} d x-\left[\phi\left(q-q^{*}\right)\right]_{x_{j}}^{x_{j r}} \\
& \int_{\Omega_{y}} \phi q d t=\int_{\Omega_{y}} \psi u_{x} d x-\left[\psi\left(u-u^{*}\right)\right]_{x_{j}+1}
\end{aligned}
$$

To get a local method we choose $u^{*}=\frac{1}{2}\left(u^{t}+u^{-}\right) \rightarrow$ Solve locally for q every when the choose $q^{*}=\frac{1}{2}\left(q^{+}+\bar{q}\right)$ and compute u_{t} locally.

It turns our the thor gives a stark method but a method that is only optimally conversul for every other degree (which is not really a bis decl ?)

An alternative is to choose so-called local $D G$ (LDG) fluxes $q^{*}=q^{+}, u^{*}=u^{-}$
this gives optimal convergences.

$$
\text { or } q^{*}=q^{-}, u^{*}=u^{+}
$$

Alternating sides for u and q.

At boundaries one may enforce Dirichlet be by outside stales $u^{+}=-u^{-}, q^{+}=q^{-}$ or Nennann $B C$ as $\quad u^{+}=u^{-}, q^{+}=-q^{-}$

Show program/results for

$$
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}+\left(\frac{u^{2}}{2}\right)_{y}=\left(u_{x x}+u_{y u}\right) \nu
$$

Nonlinear terms.
A safe but slow way to implemeel a noulineem term is

$$
\int \phi u_{t}-\phi_{x}\left(\frac{u^{2}}{2}\right) d x=\left[\phi\left(\frac{u^{2}}{2}\right)^{*}\right]
$$

Eval x on quadrature
Treated with Lax-Friechich flues nodes, square, integral e.
Note mod dey is $3 \cdot \operatorname{des}(\phi)$

