$$
\text { Mum. PDE } 1
$$

Finite volume + ERROR est. convergence / consistency

Next few weeks numerical solution of PDE

- Basic schemes FV then DG
- Stability
- Consistency
- Convergence

Notes based on Tim Warburlon' Class notes from Math 578 at UNM.

Consider a fluid in a pipe with density $\rho(x, t)$ flow ing with a velocity $u(x, t)$

rate of change ${ }^{\nu}$ in in side the red part is computed by com paring how much fluid flows ont from each end

Rate of change is

Note that:

$$
\begin{aligned}
& -u(b, t) \rho(b, t)+u(a, t) \rho(a, t)= \\
& -\frac{d}{d x} \int_{a}^{b} u(x, t) \rho(x, t) d x \text { so } \square \\
& \quad \int_{0}^{b} \frac{\partial}{\partial t} \rho(x, t)+\frac{\partial}{\partial x}(u(x, t) \rho(x, t)) d x=0
\end{aligned}
$$

a
holds for ans a, b

$$
\frac{\partial}{\partial t} \rho(x, t)+\frac{\partial}{\partial x}(\rho u)=0
$$

A particularly simple case is when x is
constant $u(x, t)=\bar{x}$, then

$$
\frac{\partial}{\partial t} s+u \frac{\partial}{\partial x} s=0 .
$$

we can solve this by change of variables

$$
\begin{aligned}
& \begin{array}{l}
\tilde{t}=t, \tilde{x}=x-\tilde{u} t, \Rightarrow \frac{\partial}{\partial t}=\frac{\partial \tilde{t}}{\partial t} \frac{\partial}{\partial \hat{t}}+\frac{\partial \tilde{x}}{\partial t} \cdot \frac{\partial}{\partial \hat{x}} \\
\text { Also: } \frac{\partial}{\partial x}=\frac{\partial \hat{t}}{\partial x} \frac{\partial}{\partial \tilde{t}}+\frac{\partial \tilde{x}}{\partial x} \frac{\partial}{\partial \tilde{x}}=\frac{\partial}{\partial \tilde{t}}-\bar{u} \frac{\partial}{\partial \tilde{x}} \\
\\
=\frac{\partial}{\partial \tilde{x}}
\end{array}
\end{aligned}
$$

So:

$$
\begin{aligned}
0=\frac{\partial}{\partial t} \rho+\bar{n} \frac{\partial}{\partial x} \rho & =\left(\frac{\partial}{\partial \vec{t}}-\bar{n} \frac{\partial}{\partial \vec{x}}\right) \rho+\bar{n} \frac{\partial}{\partial \hat{x}} \\
& =\frac{\partial}{\partial \hat{t}} \rho
\end{aligned}
$$

$$
\frac{\partial}{\partial \tilde{t}^{\prime}} \rho=0
$$

EASY to solve

$$
\rho(x, t)=\rho_{0}(\tilde{x})=\rho(x-\bar{\pi} t)
$$

The solution is translated in space as tine in creases

A finite volume solver from:

$$
\frac{d}{d t} \int_{a}^{b} \rho(x, t) d x=-\bar{u} \rho(b, t)+\bar{u} \rho(a, t)
$$

divide sur real live int elements

In each element approx. \& by a cons taut ρ_{i}

$$
\frac{d}{d t} \int^{x_{i+1}} \rho(x, t) d x=-\bar{u} \rho\left(x_{i+1}, t\right)+\bar{u} \rho\left(x_{i}, t\right)
$$

Note then $\int_{x_{i}}^{x_{i}} \rho(x, t) d x=\overline{\rho_{i}} \cdot \Delta x \quad \begin{aligned} & \text { sow } \\ & \text { approx. }\end{aligned}$

$$
\begin{aligned}
& \frac{1}{\Delta t}\left(\bar{\rho}_{i}\left(t_{n+1}\right)-\bar{\rho}\left(t_{n}\right)\right) \cdot \Delta x=-\frac{\bar{u} \rho\left(x_{i+1}, t_{n}\right)}{}+\bar{n} \rho\left(x_{i}, t_{n}\right) \\
& \text { How to recover values at } x_{i}, x_{i+1}
\end{aligned}
$$ From averages?

Use the upwind values to evaluate blue values at the boundaries. Here upwind is to the left.

$$
\begin{aligned}
\frac{1}{\Delta t}\left(\bar{\rho}_{i}\left(t_{n+1}\right)-\bar{\rho}\left(t_{n}\right)\right) \cdot \Delta x & =-\bar{u} \rho\left(x_{i 11}, t_{n}\right)+\bar{u} \rho\left(x_{i}, t_{n}\right) \\
& =-\bar{u} \bar{\rho}_{i}\left(t_{n}\right)+\bar{u} \bar{\rho}_{i-1}\left(t_{n}\right)
\end{aligned}
$$

Simplify: $\bar{g}_{i}^{n+1}=\left(1-\bar{u} \frac{\Delta t}{\Delta x}\right) \bar{\delta}_{i}^{n}+\left(\bar{u} \frac{\Delta t}{\Delta x}\right) \bar{\rho}_{i-1}^{n}$

$$
\begin{aligned}
& \rho_{i}^{n+1}=(1-\lambda) \rho_{i}^{n}+\lambda \bar{\rho}_{i-1} \quad i=1,2 \ldots \\
& \rho_{0}^{n}=\text { Boundary cold. }
\end{aligned}
$$

We Now have a reasonable scheme but how good is it?
Let q be the exact solution and

$$
\begin{aligned}
& \text { Let } q \text { be the exact solution and } x_{i+1}^{x_{i+1}} \\
& \bar{q}_{i}^{n}=\frac{1}{x_{i+1}-x_{i}} \int_{x_{i}} q(x, n \cdot \Delta t) d x=\frac{1}{\Delta x} \int_{x_{i}}^{x_{i+1}} q(x, n \Delta t) d x \\
& q \text { satisfies } \frac{d}{d t} \int_{x_{i}}^{x_{i}} q(x, t) d x=\frac{d}{d t}\left(\Delta x \bar{q}_{i}\right)=-\bar{u} q\left(x_{i+1}, t\right) \\
& +\bar{a} q\left(x_{i}, t\right)
\end{aligned}
$$

We want to estimate the error, ie the difference between the numerical and exact solution ab time $T=\Omega \Delta t$,

- We thus seek the error $E_{i}^{n}=\left|\bar{q}_{i}-\bar{\rho}_{i}\right|, n=\frac{T}{\Delta t}$
- To babe limits we insist Had Δt and Δx are coupled by $\Delta t=C \cdot \Delta x$ for some fixed C.
- If we bake $\Delta t \rightarrow 0 \Rightarrow E^{n}=C\left(\Delta t^{s}\right)$ we say that the method is s th ordn acc rate.

Let $\|E\|_{p}=\left(\Delta t \sum\left|E_{i}\right|^{p}\right)^{1 / p}$.
The scheme is said to be convergent in the norm $\|\cdot\|$ of lime T if

$$
\lim \left\|E^{n}\right\|=0
$$

$$
\Delta t \rightarrow 0
$$

$$
T=n \Delta t
$$

PRem of attack, Relate errors at subsequent limesteps and find a bound at T. We get to use the method

We start by estimating the bred truncation error.
The local trmeation error is the error commiled in one timeslep assuming we start with exact initial data

$$
\begin{aligned}
: & \bar{\rho}_{i}^{n}=\bar{q}_{i}^{n} \text {, and } \bar{\rho}_{i}^{n+1}=\left(1-\frac{\Delta t}{\Delta x} \bar{\pi}\right) \bar{q}_{i}^{n}+\frac{\Delta t}{\Delta x} \bar{\pi} \bar{q}_{i-1}^{n} \\
L T E= & R_{i}^{n} \equiv \frac{1}{\Delta t}\left(\bar{\rho}_{i}^{n+1}-\bar{q}_{i}^{n+1}\right) \\
& T A Y L O R
\end{aligned}
$$

$$
\begin{aligned}
& \bar{q}_{i-1}^{n}=\bar{q}_{i}^{n}-\Delta x\left(\frac{\partial q}{\partial x}\right)+\frac{\Delta x^{2}}{2}\left(\frac{\partial^{2} q}{\partial x^{2}}\right)+\theta\left(\Delta x^{3}\right) \\
& \bar{q}_{i}^{n+1}=\bar{q}_{i}^{n}+\Delta t\left(\frac{\partial q}{\partial t}\right)+\frac{\Delta t^{2}}{2}\left(\frac{\partial^{2} q}{\partial t^{2}}\right)+\theta\left(\Delta t^{3}\right) \\
& R_{i}^{n}=\frac{1}{\Delta t}\left(\left(1-\frac{\Delta t}{\Delta x^{n}}\right)\right)_{i}^{n}+\frac{\Delta t}{\Delta x} \bar{x}^{-\bar{q}}-\bar{q}_{i-1} \\
& =-\left(\frac{\partial \bar{q}}{\partial t}+\frac{\overline{\partial g}}{\partial x}\right)-\left\{\begin{array}{l}
\text { Simplify } \\
\frac{\Delta t}{2}\left(\frac{\partial^{2} q}{\partial t^{2}}\right)-\frac{\bar{u} \Delta x}{2}\left(\frac{\partial^{2} q}{\partial x^{2}}\right)+G\left(\Delta x^{2}\right) \\
\\
+G\left(\Delta t^{2}\right)
\end{array}\right.
\end{aligned}
$$

Simplify more: $\frac{\overline{\partial q}}{\partial t}+x \frac{\overline{\partial q}}{\partial x}=0, \frac{\partial^{2} q}{\partial t^{2}}=\bar{u}^{2} \frac{\partial^{2} u}{\partial x^{2}}$

$$
R_{i}^{n}=\frac{\bar{\pi} \Delta x}{2}\left(1-\frac{\bar{u} \Delta t}{\Delta x}\right) \frac{\overline{\partial^{2} q}}{\partial x^{2}}+\underline{G\left(\Delta x^{2}\right)},
$$

Note that $R_{i}^{n} \rightarrow 0$ as $\Delta t \rightarrow 0$ assuming $\Delta t=C \cdot \Delta x$

When the local from cation error $\rightarrow 0$ as $\Delta t \rightarrow 0$ we say that the method it consistent

The local truncation error predicts that we will make an Δx error every timestep. Let's be a bit more precise
DEF $\bar{Q}_{i}^{n}=\bar{q}_{i}^{n}+E_{i}^{n}$ and write the scheme as

$$
\bar{\rho}^{n+1}=N \bar{\rho}_{0}^{n}
$$

We have

$$
\begin{aligned}
& \bar{E}^{n+1}= N(\underbrace{\left(\bar{q}^{n}+E^{n}\right)-\bar{q}^{n+1}=N\left(\bar{q}^{n}+\bar{E}^{n}\right)-N\left(\bar{q}^{-n}\right)+N\left(\bar{q}^{-n}\right)-\bar{q}^{-n+}}_{\bar{g}^{n}} \\
&= \underbrace{N\left(\bar{q}^{n}+\bar{E}^{n}\right)-N\left(\bar{q}^{n}\right)}_{\text {Propagation of previous }}+\Delta t R^{n} \\
& \text { TRUNCATIOn } \\
& \text { ERROR }
\end{aligned}
$$

Now suppose Chub for some norm Wis a contraction.

$$
\begin{aligned}
& \|N(p)-N(q)\| \leq\|p-q\| \\
E^{n+1} & =N\left(\bar{q}^{n}+E^{n}\right)-N\left(\bar{q}^{n}\right)+\Delta t R^{n}, \text { taking norms }+\Delta \text { ineq. } \\
\left\|E^{n+1}\right\| & \leq\left\|N\left(\vec{q}+E^{n}\right)-N\left(\bar{q}^{n}\right)\right\|+\Delta t\left\|R^{n}\right\| \\
& \leq\left\|\bar{q}^{n}+E^{n}-\bar{q}^{n}\right\|+\Delta t\left\|R^{n}\right\| \leqslant\left\|E^{n}\right\|+\Delta t\left\|R^{n}\right\| \\
& \left.\leq\left\|E^{n-1}\right\|+\Delta t\left\|R^{n-1}\right\|+\Delta t\left\|R^{n}\right\| \quad \text { \{mun times }\right\} \\
& \leqslant\left\|E^{0}\right\|+\Delta t \sum_{m=1}^{n}\left\|R^{m}\right\|
\end{aligned}
$$

In other words the error at time T is

$$
\left\|E^{n H}\right\| \leqslant\left\|E^{0}\right\|+\Delta t \sum_{m=1}^{n}\left\|R^{m}\right\| \leqslant\left\|E^{0}\right\|+T_{m=1,-n}^{\max }\left\|R^{m}\right\|
$$

So IF the method is consistent (and of is smooth)

$$
\left\|E^{n+1}\right\| \leqslant\left\|E^{0}\right\|+T G(\Delta x)
$$

Finitich dele $\rightarrow 0$ as $\Delta x \rightarrow 0$

Home work: Prove the

$$
\bar{\rho}_{i}^{n+1}=(1-\lambda) \bar{\rho}_{i}^{n}+\lambda \bar{\rho}_{i-1}^{-n} \quad \text { is a contraction }
$$

in $\|\cdot\|_{1}$ when $\bar{\rho}_{0}^{n}=0$.

DG: Consistency - Stability -Convergence
We solved $\frac{d}{d t}\left(\Delta x \bar{q}_{i}(t)\right)=-\bar{u} q\left(x_{i+1}, t\right)+\bar{u} q\left(x_{i}, t\right)$

$$
\underline{n}-\bar{x} \bar{q}_{i}+\bar{u} \bar{q}_{i-1}
$$

$\hat{i}_{\text {upwind approx. }}$
Our first DG scheme will generalize this so that we can exploit approximation by high degree polynomials

Again divide the pipe into segments separated by $x_{1}, x_{2}, x_{3} \ldots . x_{N}$.

On each segment $x_{i} \leqslant x \leqslant x_{i+1}$ we solve a weal for m of the advection eq.

- space of polynomial of dis P

Find $\rho_{i} \in P^{P}\left(x_{i}, x_{i H}\right)$ such thai $\forall v \in P^{P}\left(x_{i}, x_{i+1}\right)$

$$
\int_{x_{i}}^{x_{i+1}} v\left(\frac{\partial \rho_{i}}{\partial t}+\bar{u} \frac{\partial \rho_{i}}{\partial x}\right) d x=V\left(x_{i}\right) \bar{u}\left(\rho_{i-1}\left(x_{i}\right)-\rho_{i}\left(x_{i}\right)\right)
$$

$$
\int_{x_{i}}^{x_{i+1}} v\left(\frac{\partial \rho_{i}}{\partial t}+\bar{u} \frac{\partial \rho_{i}}{\partial x}\right) d x=V\left(x_{i}\right) \bar{u}\left(\rho_{i-1}\left(x_{i}\right)-\rho_{i}\left(x_{i}\right)\right)
$$

Selecting $\rho_{i} \in P\left(x_{i}, x_{i+1}\right)$ i.e. constants Reduces this to finite vol.

What about stability?
The best part of $d G$ is that this is trivial

- Find $g_{i} \in P^{p}\left(x_{i}, x_{i+1}\right)$ such that $\forall v \in P^{P}\left(x_{i}, x_{i-1}\right)$

$$
\int_{x_{i}}^{x_{i+1}} V\left(\frac{\partial \rho_{i}}{\partial t}+\bar{u} \frac{\partial \rho_{i}}{\partial x}\right) d x=V\left(x_{i}\right)\left(\rho_{\bar{i}-1}\left(x_{i}\right)-\overline{\rho_{i}\left(x_{i}\right)}\right)
$$

Select $V=\rho_{i} \nabla$

$$
\int_{x_{i}}^{x_{i+1}} \rho_{i}\left(\frac{\partial \rho_{i}}{\partial t}+\bar{u} \frac{\partial \rho_{i}}{\partial x}\right) d x=\rho_{i}\left(x_{i}\right)\left(\rho_{i-1}\left(x_{i}\right)-\rho_{i}\left(x_{i}\right)\right)
$$

Simplify bogel an energy estimale

$$
\begin{aligned}
& \frac{d}{d t} \int_{x_{i}}^{x_{i+1}} \frac{\rho_{i}^{2}}{2} d x=-\bar{u}\left(\int_{x_{i}}^{x_{i+1}} \rho_{i} \frac{\left.\partial \rho_{i} d x\right)+\bar{u} \rho_{i}\left(x_{i}\right)\left(\rho_{i-1}\left(x_{i}\right)-\rho_{i}\left(x_{i}\right)\right)}{} \begin{array}{r}
\text { IBP }=-\bar{u}\left[\frac{\rho_{i}^{2}}{2}\right]+\bar{u} \rho_{i}\left(x_{i}\right)\left(\rho_{i-1}\left(x_{i}\right)-\rho_{i}\left(x_{i}\right)\right) \\
=\bar{u}\left(-\frac{\rho_{i}\left(x_{i}\right)}{2}-\frac{\rho_{i}\left(x_{i-1}\right)}{2}\right)+\bar{u} \rho_{i}\left(x_{i}\right) \rho_{i-1}\left(x_{i}\right) \\
\frac{d}{d t} \int_{x_{i}}^{x_{i-1}} \frac{\rho_{i}^{2}}{2} d x=\bar{u}\left(-\frac{\rho_{i}^{2}\left(x_{i}\right)}{2}-\frac{\rho_{i}^{2}\left(x_{i+1}\right)}{2}\right)+\bar{u} \rho_{i}\left(x_{i}\right) \rho_{i-1}\left(x_{i}\right)
\end{array}\right.
\end{aligned}
$$

Sumover ELEMS

$$
\begin{aligned}
& \sum_{i=1}^{N-1}: \frac{d}{d t} \int_{x_{i}}^{x_{i+1}} \frac{\rho_{i}^{2}}{2} d x=\bar{u}\left(-\frac{\rho_{i}^{2}\left(x_{i}\right)}{2}-\frac{\rho_{i}^{2}\left(x_{i+1}\right)}{2}\right)+\bar{u} \rho_{i}\left(x_{i}\right) \rho_{i-1}\left(x_{i}\right) \\
& \begin{array}{r}
\frac{d}{d t} \sum_{i=1}^{N-1}\left(\int_{x_{i}}^{x_{i+1}} \int_{i}^{2} d x\right)=\sum_{i=1}^{N-1}\left[\bar{u}\left(-\frac{\rho_{i}^{2}\left(x_{i}\right)}{2}-\frac{\rho_{i}^{2}\left(x_{i+1}\right)}{2}\right)+\bar{u} \rho_{i}\left(x_{i}\right) \rho_{i-1}\left(x_{i}\right)\right] \\
\leqslant \sum_{i=1}^{N-1}\left[\bar{u}\left(-\frac{\rho_{i}^{2}\left(x_{i}\right)-\rho_{i}^{2}\left(x_{i+1}\right)}{2}\right)+\bar{u}\left(\frac{\rho_{i}^{2}\left(x_{i}\right)+\rho_{i-1}^{2}\left(x_{i}\right)}{2}\right]\right. \\
\leqslant \frac{\bar{u}}{2} \sum_{i=1}^{N-1}\left[-\rho_{i}^{2}\left(x_{i+1}\right)+\rho_{i-1}^{2}\left(x_{i}\right)\right] \\
\leqslant \frac{\bar{u}}{2}\left(\rho_{0}^{2}\left(x_{1}\right)-\rho_{N-1}^{2}\left(x_{n}\right)\right)
\end{array}
\end{aligned}
$$

Note that we left time continuous. If lime derivatives are discretized exactly we have that the energy of the numerical solution is controled by the boundary condition $\rho_{0}\left(x_{i}\right)$
denoting $\|S\|_{2}^{2}=\sum_{i=1}^{N-1} \int_{x_{i}}^{x_{i+1}} \frac{\rho_{i}^{2}}{2} d x$ we find

$$
\begin{aligned}
\frac{d}{d t} \frac{\|\rho\|_{2}^{2}}{2} & \leqslant \frac{\bar{u}}{2}\left(\rho_{0}^{2}\left(x_{i}\right)-\rho_{N-1}^{2}\left(x_{N}\right)\right) \\
\text { or } \frac{d}{d t}\|\rho\|_{2} & \leqslant \frac{\bar{u}}{2\|\rho\|_{2}}\left(\rho_{0}^{2}\left(x_{i}\right)-\rho_{N-1}^{2}\left(x_{N}\right)\right)
\end{aligned}
$$

Now we can try to bound the error in the same way.
Eg:: Let ρ and σ be two numerical solutions that are close do the initial time, the trivially (same BC)

$$
\frac{d}{d f}\|\rho-\sigma\|_{2} \leqslant \frac{-\bar{u}\left(\rho_{N-}\left(x_{N}\right)-\sigma_{N_{1}}\left(x_{N}\right)\right)^{2}}{2\|\rho-\sigma\|_{2}}
$$

$\leqslant 0 \rightarrow$ the solutions get closer with time.

1. Let of be the exact solution
2. Assume that we have a projection operator

$$
\pi^{p}: H^{\prime}\left(x_{1}, x_{N}\right) \rightarrow \bigcup_{i=1}^{N-1} P^{p}\left(x_{i}, x_{i+1}\right)
$$

We work with 3 -equations
(1) $\int v \pi^{p}\left(\frac{\partial q_{i}}{\partial t}+\frac{\bar{u}}{\partial q_{i}} \frac{\partial x}{\partial x}\right) d x=0$

TRUNCATION
(5) $\int v\left(\frac{\partial \pi^{p} q_{i}}{\partial t}+\bar{u} \frac{\partial}{\partial x} \pi^{p} q_{i}\right) d x=V\left(x_{i}\right)\left(\pi^{p} q_{i-1}\left(x_{i}\right)-\pi^{p} q_{i}\left(x_{i}\right)\right)+\int v R_{i}$
(3) $\int V\left(\frac{\partial \rho_{i}}{\partial t}+\bar{n} \frac{\partial \rho_{i}}{\partial x}\right) d x=V\left(x_{i}\right)\left(\rho_{i-1}\left(x_{i}\right)-\rho_{i}\left(x_{i}\right)\right)$
$\left.\begin{array}{l}\text { (1) Project PDE. } \\ \text { (2) Truncation error. } \\ \text { (3) The method. }\end{array}\right\} \begin{aligned} & \text { Assume that projection and } \frac{\partial}{\partial t} \\ & \text { commute and the } q \text { is smooth. } \\ & 1+2 \text { gives }\end{aligned}$

$$
\begin{aligned}
& \begin{aligned}
& \int_{i n}^{x_{i n}} v R_{i} d x=\int v\left(\bar{n} \frac{\partial \pi^{p}}{\partial x}-\bar{u} \pi^{p} \frac{\partial q_{i}}{\partial x}\right) d x-v\left(x_{i}\right)\left[\pi^{p} q_{0-1}\left(x_{i}\right)-q_{i-1}\left(x_{i}\right)\right. \\
&\left.+q_{i}\left(x_{i}\right)-\pi^{p} q_{i}\left(x_{i}\right)\right]
\end{aligned} \\
& \left.+q_{i}\left(x_{i}\right)-\pi^{p} q_{i}\left(x_{i}\right)\right) \\
& \text { Now USE } \gamma=R_{i} \in P^{p}+C-S+\Delta \text { iaea. }
\end{aligned}
$$

$$
\left.\|R\|_{2} \leqslant \sum_{i=1}^{\sum_{i=1}^{N-1}\left\|h^{s}\right\| \frac{d^{p} q}{d x^{p}} \|_{2}} \frac{\bar{u} \pi^{p} q_{i}}{\partial x}-\bar{u} \pi^{p} \frac{\partial q_{i}}{\partial x} \|_{2}^{N-1}+\sum_{i=1}^{N}| | \pi^{p} q_{i-1}\left(x_{i}\right)-q_{i}\left(x_{i}\right) \right\rvert\,
$$

We have an estimable for truncation error

Now we estimale $\left\|\pi^{p} q-g\right\|_{2}$ by (3)-(2).
(2) $\int v\left(\frac{\partial}{\partial t} \pi^{p} q_{i}+\bar{\pi} \frac{\partial}{\partial t} \pi^{p} q_{i}\right) d x=\nu\left(x_{i}\right)\left(\pi^{p} q_{i-1}\left(x_{i}\right)-\pi^{p} q_{i}\left(x_{i}\right)\right)+\int_{x_{i}}^{x_{i-1}} v R_{i}$
(3) $\int V\left(\frac{\partial g_{i}}{\partial t}+\bar{\pi} \frac{\partial \rho_{i}}{\partial x}\right) d x=\nabla\left(x_{i}\right)\left(\rho_{i-1}\left(x_{i}\right)-\rho_{i}\left(x_{i}\right)\right)$

Subtract (3) from (2) and set $\nu=\left(\pi_{q_{i}}^{p}-\rho_{i}\right)$

$$
\begin{aligned}
& \int_{x_{i}}^{x_{i n}}\left(\pi q_{i}-\rho_{i}\right)\left(\frac{\partial \pi q_{i}-\rho_{i}}{\partial t}+\bar{u} \frac{\partial \pi q_{i}-\rho_{i}}{\partial x}\right) d x= \\
& \quad+\int_{x_{i}}\left(\pi q_{i}\left(x_{i}\right)-\rho_{i}\left(x_{i}\right)\right)\left(\pi q_{i-1}\left(x_{i}\right)-\rho_{i-1}\left(x_{i}\right)-\pi q_{i}\left(x_{i}\right)+\rho_{i}\left(x_{i}\right)\right) \\
& \quad \begin{array}{l}
\text { USE the SL-abilitit ReS }
\end{array} \\
& \frac{d}{d l}\|\rho-\sigma\|_{2} \leqslant 0
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d t}\left\|\pi^{p} q-\rho\right\|_{2}^{2} & \leqslant \sum_{i=1}^{N-1} \int_{x_{i}}^{x_{i}+1}\left(\pi^{p} q_{i}-\rho_{i}\right) R_{i} d x \\
& \leqslant\left\|\pi_{q}^{p}-\rho\right\|_{2}\|R\|_{2}
\end{aligned}
$$

Use Estimate for $\|R\|$

$$
\frac{d}{d t}\left\|\pi^{p} q-q\right\|_{2} \leqslant\|R\| \leqslant C \cdot h^{S}\left\|\frac{d^{p} q}{d x^{p}}\right\|_{2}
$$

The numerical sol. and the pro ejection grows slowly apart in time.

We integrale in time:

$$
\begin{aligned}
& \text { We inte grale in Fime: } \\
& \left\|\pi^{P} q-\rho\right\|_{2} \leqslant\left\|\pi^{P} q(t=0)-\rho(t=0)\right\|_{2}+C h^{S} \max _{0 \leqslant \tau \leqslant T}\left\|\frac{d^{P} q}{d x^{P}}(t)\right\|_{2}
\end{aligned}
$$

Finally we estimabe eroo between exach ond num.
Sol.

$$
\|q-\rho\|_{2}=\|q-\pi q+\pi q-\rho\|
$$

$$
\begin{aligned}
& \leqslant\|q-\pi q\|_{2} \\
& +\|\pi q(t=0)-\rho(t=0)\|_{2}+C h^{s} T_{0 \leqslant \tau \leqslant T}\left\|\frac{d^{p} q(\psi)}{d x^{p}}\right\|_{2}
\end{aligned}
$$

First term is beyoud our con trol second term suggests we approximch inithl data accurablely.
Third term leads to linean grow th with T.

- We swept $\operatorname{Sin} C h^{S}\left\|\frac{d^{P} q}{d \times p}\right\|_{2}$ under the rug
- In multi D the argument are the same
- In special cases one can cook up a better

IT to get a sha per estimate (Does not effect the method though)

Next lecture we start thinking aboub multiple dimensions.

