APPM 4720 / 5720 — HOMEWORK # 3 Due: Feb, 2018.

Instructions

Put away your cell-phone and read this document from start to finish. Discuss in the group
what the different instructions and tasks mean. Make sure you have a plan how to achieve
the main task (and write up the results!) within the allotted time (team-work is probably
needed). How will you check that the subtasks are correct?

Main task

Consider a grid with N + 1 grid-points z;, = 2o < 21 < ... < Ty = TR, defining N elements
Q; ={x € [r;-1,2]},i=1,...,N. You are to approximate a function f(z) on = € [z, x|
by Ls-projection onto the space of element-wise Legendre polynomials of degree ¢q. That is
you must find ¢(k, ) so that

/Q‘B(T)Zc(k,i)Pk(r)dx:/ P(r)f(z)dz, 1=0,...,q. (1)

k=0 Qi

Here r € [—1,1] is a local variable such that on element (2; the affine map x(r) satisfies
x(—1) = x;_1, (1) = z; (I use fancy words here so that you don’t have to be afraid of them
the next time you see them, just find a,b so that z(r) = ar + b satisfies the two conditions,
it is easy!).

Subtasks

Feel free to use available open source code for the tasks below. Make sure you give appropriate
credit and that you respect the licensing requirements (if any).

1. Write a module type_defs.f90 that defines sp, dp, etc. Use this module in all of the
code you write in this class.

2. Write a module leg_funs.f90 that contains functions for evaluating Legendre poly-
nomials (and eventually their derivatives) of degree k.

3. Write a module quad_1d.£90 that defines a type quad_1d that holds the start and end
coordinate of the element, the degree of the element ¢ and a two dimensional allocatable
array of size (0:q,nvars). In this homework nvars is one as you are approximating
a single function but in a later homework when you solve systems of PDE it will be
greater than one. The module should contain internal subroutines that “allocates a
quad” and “deallocates a quad”. We will stick more information into this structure,
can you think of some things that could be good to know once the elements starts to
communicate with each other?



4. You should approximate the integrals by Gauss quadrature on Gauss-Legendre-Lobatto
nodes and of sufficiently high degree (how high?). You may want to use the existing
code 1glnodes.m by Greg von Winckel (after translating it to Fortran). Note that the
integrals are carried out on the reference domain r € [—1, 1] so you have to perform a
(as discussed above) change of variables dz = x,.(r)dr

5. Write routines that can output the approximation on a given grid (not necessarily the
same as the one above). This does not have to be super general but at least make sure
you can (over)sample the solution on each element.

6. Note that (1) are a set of NV decoupled linear systems of equations of size (¢+1) X (¢+1).
Do you have to write a routine that performs Gauss elimination (or more precisely call
LAPACK)? Why not?

7. Your approximation can be stored in a quad_1d array with N entries, say:
type(quad_1d), dimension(:), allocatable :: qds_1d
which can be ordered from left to right. Note that in multiple dimensions such an
array may not have a natural ordering and for example element 1 and 2 may be far
away from each other.

To be reported (minimum)

Write up a short report in EXTEXwhere you describe your findings.

1. For at least three different functions f(x) provide evidence that for ¢ = 0,1, ..., your
approximation is increasingly accurate with an increasing number of elements as mea-
sured in uniform and Lo-norm. For example you can provide log-log plots where the
errors are displayed as functions of the (typical) element size.

2. Fix the number of elements and inspect how the error decreases as you increase ¢g. Can
you fit (by trial and error) a function of the type ¢4 to the error?

3. Use a script to carry out the collection of the data required to produce the figures /
tables in your report.

4. Be curious. What happens if f(x) is not smooth? Suppose you have equidistant zg, x;
etc. how does the rates of convergence compare when you add (small, say 5%) random
perturbations to the grid? Suppose you prefer Chebyshev or monomials, what would
change?



