
APPM 4720 / 5720 — HOMEWORK # 4 Due: Feb 19, 2018.

Instructions

Put away your cell-phone and read this document from start to finish. Discuss in the group
what the different instructions and tasks mean. Make sure you have a plan how to achieve
the main task (and write up the results!) within the allotted time (team-work is probably
needed). How will you check that the subtasks are correct?

Main tasks

The main task of this homework is to approximate the transport equation

ut + (au)x = 0, xL ≤ x ≤ xR, t > 0, (1)

with initial conditions u(x, 0) = f(x).

Subtasks

At the end of his homework you will have an approximation on the grid from the previous
homework but you will get there in steps:

1. Approximate (au)x on a single element with no boundary conditions.

2. Approximate (au)x on a single element with boundary conditions.

3. Approximate ut + (au)x = 0 on a single element with periodic boundary conditions.

4. Approximate (au)x on a grid with inter-element and physical boundary conditions.

5. Approximate ut + (au)x = 0 on a grid with inter-element and physical boundary
conditions (you just wrote your first discontinuous Galerkin solver).

Approximate (au)x on a single element with no boundary conditions

Let u be a function approximated on xL ≤ x ≤ xR, by a polynomial uh

u(x(r)) ≈ uh ≡

q
∑

k=0

ûkPk(r). (2)

First consider the case when a is a constant. Your task is to find another polynomial (more
precisely the coefficients of that polynomial)

b(x) =

q
∑

k=0

b̂kPk(r),



such that the coefficients b̂k solve the linear system of equations

∫ xR

xL

bPldx =

∫ xR

xL

Pl

d(auh)

dx
dx, l = 0, . . . , q. (3)

To write the system in matrix form we introduce the (q+1)× 1 vectors b̂ = [b̂0, b̂1, . . . , b̂q]
T ,

û = [û0, û1, . . . , ûq]
T along with the matrices M and S. We then have (recall a is a constant

for now)
M b̂ = aSû.

When computing the elements of M and S you should use a quadrature of sufficient
degree so that the integrals are computed exactly.

Report the error (max or L2) in the approximation to the derivative as a function of q
for a few different u. Look up exponential / spectral / algebraic convergence in Boyd’s book
and indicate which type of convergence you have here. Take the largest value of q large
enough so that you see the effects of roundoff. Redo at least one of the error vs. q plots in
quadruple precision.

Approximate (au)x on a single element with boundary conditions

Now consider the case when a = a(x) is not a constant. As we have subroutines for computing
derivatives of Legendre polynomials, P ′

l , it is convenient to perform an integration by parts
in (3) to find

∫ xR

xL

bPldx = −

∫ xR

xL

auhdPl

dx
dx+

[
auhPl

]xR

xL

, l = 0, . . . , q. (4)

Note that if a(x) is a polynomial the integral can be carried out exactly as long as the degree
of the quadrature is high enough, but in the general case the integral will be inexact.

Note that the term
[
auhPl

]xR

xL

can be thought of as a sum of two vectors

a(xR)u
h(xR)








P0(1)
P1(1)

...
Pq(1)








︸ ︷︷ ︸

LR

−a(xL)u
h(xL)








P0(−1)
P1(−1)

...
Pq(−1)








︸ ︷︷ ︸

LL

.

Again, we may write (4) as a system of equations

M b̂ = −S̃aû+ a(xR)u
h(xR)LR − a(xL)u

h(xL)LL,

and solve for b̂.
Consider the case −π ≤ x ≤ π, for a(x) = 2/(2 + sin(x)) and u(x) = exp(sin(x)) and

find and plot the errors in (au)x as a function of q. How accurate do you have to compute
the integrals to not loose any accuracy in the approximation of (au)x?
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We will now compute the eigenvalues of the matrix A, defined through b̂ = Aû, and must
therefore rewrite boundary terms slightly. Note that to compute uh(xR) you may simply take
the inner product LR

T û and we thus have

A = M−1

(

−S̃1 + LRLR
T − LLLL

T
)

. (5)

• Assume periodic boundary conditions (i.e. use uh(xR) = LL
T û) and use the LAPACK

routine dgeev to compute the eigenvalues, λk, of the matrix

A = M−1

(

−S̃1 + LRLL
T − LLLR

T
)

(6)

and plot all of them in the complex plane for a few values of q. Also plot λmax =
maxk |λk| as a function of q. How does λmax scale with q?

• How does this compare with the “size” of d/dx when applied to u(x) = eiqx?

• Compare λmax with known formulas for P ′

q(±1) and P ′

q(0).

• Why must A always have an eigenvalue that is identically zero?

Approximate ut+(au)x = 0 on a single element with periodic boundary conditions

For this task let a be a constant. To approximate the solution to ut + (au)x = 0 we simply
replace the role of b(x) with uh

t . Assuming that uh(x, t) depends on space and time we have

ut(x, t) ≈
∂uh(x(r), t)

∂t
≡

q
∑

k=0

û′

k(t)Pk(r). (7)

You immediately obtain a system of ordinary differential equations for û′(t)

M û′(t) = −S̃aû+ a(xR)u
h(xR)LR − a(xL)u

h(xL)LL. (8)

To find the initial data use your codes from homework 3.
To timestep the system you can use RK4. If that is too slow due to excessively small

timesteps (stability requires λmax∆t . 1) you can try an implicit method like the trapezoidal
method or if you want to be fancy, SDIRK-5-4 or RadauIIA.

Show me some movies of the results of this assignment. Also report (by a semilogy plot
of error vs. time) how the L2 error grows in time for some combinations of timesteps an q.
Can you detect the advertised rate of convergence for the time marching scheme you chose?

Note that the description of this assignment is rather terse, ask for help if you need it.
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Approximate (au)x on a grid with inter-element and physical boundary conditions

Now consider the grid from homework 3. That is, consider a grid with N + 1 grid-points
xL = x0 < x1 < . . . < xN = xR, defining N elements Ωi = {x ∈ [xi−1, xi]}, i = 1, . . . , N . You
are to approximate a function b(x) composed of polynomials of degree q on each element.
We denote the polynomials representing b(x) and uh(x) on element i by bi(x) and uh

i (x).
Equation (4) on two adjacent element are

∫ xi+1

xi

bi+1Pldx = −

∫ xi+1

xi

auh
i+1

dPl

dx
dx+

[
auh

i+1Pl

]xi+1

xi

, (9)

∫ xi

xi−1

biPldx = −

∫ xi

xi−1

auh
i

dPl

dx
dx+

[
auh

i Pl

]xi

xi−1
. (10)

Now, strictly speaking we do not need to connect the elements if we only want to approximate
the derivative of u. However if we want to solve ut + (au)x = 0 we will need for information
to travel between elements.

In the above formulas the values uh
i+1(xi) and uh

i (xi) both exist at the boundary in-
between the elements and we therefore use these to “connect” the elements. Precisely we
replace the two quantities auh

i+1(xi) and auh
i (xi) by a single value called the numerical

flux and denoted (au)∗. We will discuss how to chose (au)∗ in detail later but for no we will
simply take it as an average

(au)∗ = βauh
i+1(xi) + (1− β)auh

i (xi).

You have probably noticed that the mass matrix on the left hand sides in the above
system of equations can be inverted locally so a good strategy for finding b(x) is

1. For each element compute the values of uh on the edges (you probably want to add
these “trace values” or “traces” to your type quad_1d).

2. For each element compute the numerical fluxes by averaging. Let β be a parameter.

3. For each element find b̂i from

M b̂i = −S̃aûi + (au)∗RLR − (au)∗LLL, i = 1, . . . , N.

Now you have two parameters that will effect the error, the degree of the polynomials
q and the number of elements N . Let u be a periodic function and set a = 1 and fix
q and investigate how the rate of convergence in the error depends on the numerical flux
corresponding to β = 0, 1/2, 1. You may see different results for even and odd q so repeat
the computation for several different choices.

Approximate ut + (au)x = 0 on a grid with inter-element and physical boundary
conditions (you just wrote your first discontinuous Galerkin solver)

Repeat the single elements experiments above but now for your full grid. Here the timestep
will need to satisfy aλmax∆t . h, s if you keep the degree q around 5 you should be able to
use RK4 without any problems.
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