
Solving PDEs with Hermite Interpolation

Thomas Hagstrom and Daniel Appelö

Abstract We examine the use of Hermite interpolation, that is interpolation us-
ing derivative data, in place of Lagrange interpolation to develop high-order PDE
solvers. The fundamental properties of Hermite interpolation are recalled, with an
emphasis on their smoothing effect and robust performance for nonsmooth func-
tions. Examples from the CHIDES library are presented to illustrate the construction
and performance of Hermite methods for basic wave propagation problems.

1 Introduction

Polynomials are the workhorse for approximating the solution to general PDE’s -
indeed, using Taylor expansions, it is clear that convergence of a method at high
order with grid refinement is equivalent to it being at least approximately exact for
polynomial solutions of high degree. Thus both high order finite difference meth-
ods and nodal spectral element methods are typically constructed using Lagrange
interpolants. However, the two classes of method are obviously distinct in the way
the polynomials are used - for difference methods they are implicitly reconstructed
at each grid point via the difference formulas, while for element based approaches
they are defined and used in a finite region. An advantage of the element-based inter-
polants is the possibility to directly use properties of the PDE to guarantee stability,
as in the standard continuous and discontinuous Galerkin frameworks [11, 18], as
well as the localization of much of the computational effort. A disadvantage, how-
ever, is the fact that high-degree polynomials can support boundary layers at ele-
ment edges, as illustrated by the plot of the degree 15 Legendre polynomial and its
derivative in Figure 1.
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Fig. 1 Plot of the Legendre polynomial, P15(x) and its first derivative. Note that the maximum
value is 1 and the maximum derivative value is 120 - see (1).

This boundary layer phenomenon is encapsulated in the inequalities of Bernstein
and Markov [5]:

Theorem 1. Let q(x) be a polynomial of degree n. Then for −1≤ x≤ 1dq
dx

≤min
(

n√
1− x2

,n2
)
‖q‖L∞([−1,1]). (1)

The practical consequence of (1) and its generalization to multidimensional ele-
ments [14] is that differentiation matrices built from polynomials of degree n must
have first derivative matrices whose norm scales like n2

H , where H is the element
width. Given that the element contains n+ 1 Lagrange nodes, this is a factor of n
worse than the scaling of finite difference formulas with a comparable node density,
leading to an artificially stiff semidiscretization. If second derivatives are present
the situation becomes more extreme. Although approaches based on mappings (to
produce nonpolynomial bases, e.g. [21]) or filtering [26] can be used, the funda-
mental fact is that a nonstiff polynomial differentiation matrix can only be based on
differentiation near the element center.

Motivated by these facts, and in addition by the inherent stability properties de-
tailed below, we propose the use of Hermite interpolation in place of Lagrange
interpolation to construct high-order polynomial elements. That is, rather than using
function values distributed throughout an element as the basic degrees-of-freedom,
we use function and derivative values, or equivalently the coefficients of the Tay-
lor polynomial, centered at an interior point. In many aspects the resulting methods
enjoy the advantages of both finite difference and finite element discretizations:

i. Degree-independent stability constraints - with sufficiently accurate local time-
stepping for hyperbolic problems all degrees-of-freedom in an element can be
updated independent of neighboring elements over a time step limited only by
domain-of-dependence requirements.

ii. Stability based on continuous energy estimates.
iii. Highly localized evolution of many degrees-of-freedom.
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Below, through simple examples, we will illustrate the basics of a PDE solver
built on Hermite interpolation. The examples are implemented as Matlab programs
and freely available as part of the CHIDES1 library chides.org. Our initial re-
lease of CHIDES will contain, besides the Matlab implementation of the examples
discussed here, various subroutines and drivers written in modern FORTRAN illus-
trating and enabling the construction of Hermite PDE solvers on structured meshes.
We plan future releases including more complex capabilities such as coupling with
DG methods on hybrid grids, as well as implementations on overset grids.

2 Hermite Interpolation

Theorem 2 (Hermite interpolation (Dahlquist & Björk [12])). Let {xi}s
i=1 be s

distinct points. Let f (x) be a function defined and with derivatives up to order mi
at xi. Then there exists a unique polynomial p(x) of degree ≤ r− 1, where r =

∑
s
i=1(mi +1) solving the Hermite interpolation problem:

d j p(x)
dx j

∣∣∣∣∣
x=xi

=
d j f (x)

dx j

∣∣∣∣∣
x=xi

, j = 0, . . . ,mi, i = 1, . . . ,s. (2)

Piecewise interpolation
Now consider the special form of Hermite interpolation used in CHIDES - namely
piecewise interpolation using two nodes with m derivatives at each. Suppose
x0 < x1 < .. . < xN . On an interval (xi−1,xi) we independently compute an
interpolant, pi(x), of degree 2m+1, satisfying (2) with mi−1 = mi = m. The global
piecewise interpolant we denote by:

Im f = pi(x), x ∈ (xi−1,xi). (3)

Note that Im f ∈Cm. We also employ piecewise degree 2m+1 interpolation on a
dual grid consisting of nodes xi+1/2 = (xi + xi+1)/2 and define

Ĩm f = pi+1/2(x), x ∈ (xi−1/2,xi+1/2) (4)

with pi+1/2(x) being the solution to the Hermite interpolation problem with data
consisting of derivatives through order m at xi±1/2.

Newton form
The cellwise Hermite interpolation problem is solved repeatedly during each time
step, and its cost is the dominant cost for linear systems with constant coefficients.
An efficient way to solve to (2) is to form the generalized divided difference table
used to find the interpolating Newton polynomial. We form the Newton table by
first filling in f (s)(xi−1)/s! and f (s)(xi)/s!, s = 0, . . . ,m as illustrated in Table 1.

1 Charles Hermite Interpolation Differential Equation Solver
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Next we fill in the missing positions (indicated by ? in Table 1) one column at a
time from left to right. The interpolating polynomial, pi(x), can then be found as

pi(x) = a0 +a1(x− xi−1)+ · · ·+am+1(x− xi−1)
m+1 +am+2(x− xi−1)

m+1(x− xi)

+ · · ·+a2m+1(x− xi−1)
m+1(x− xi)

m,

where a j, j = 0, . . . ,2m+1 are the coefficients on the upper diagonal in the table.

Table 1 A generalized Newton divided difference table.

xi−1
xi−1
xi−1
xi
xi
xi

f (xi−1)
f (xi−1)
f (xi−1)
f (xi)
f (xi)
f (xi)

f (1)(xi−1)/1!
f (1)(xi−1)/1!

?

f (1)(xi)/1!
f (1)(xi)/1!

f (2)(xi−1)/2!
?
?

f (2)(xi)/2!

?
?
?

?
?

?

In our PDE solvers we work with monomial basis,

pi(x) =
2m+1

∑
j=0

c jx j. (5)

The coefficients c j can be obtained from a j by a fast dual Vandermonde solve [12].

Error estimates
Detailed formulas for the error in Hermite interpolation of a smooth function are
given in [4]. Precisely, for x ∈ (xi−1,xi), the Peano representation of the local error
can be easily derived by noting that e = f −Im f solves the two point boundary
value problem

d2m+2e
dx2m+2 =

d2m+2 f
dx2m+2 ,

d je
dx j = 0, x = xi−1,xi, j = 0, . . .m. (6)

Thus

f (x)−Im f (x) =
∫ xi

xi−1

Ki(x,s)
d2m+2 f
dx2m+2 (s)ds, (7)

where the kernel Ki is the Green’s function for the two-point boundary value
problem (6). Indeed, the local Hermite interpolant can be characterized as the
unique solution of the inhomogeneous boundary value problem

d2m+2 pi

dx2m+2 = 0,
d j pi

dx j =
d j f
dx j , x = xi−1,xi, j = 0, . . .m. (8)

Simple scaling arguments combined with the transformation x = xi−1 + zhi then
show that e = O(h2m+2

i ) where hi = xi− xi−1 is the element width. We also have
the formula
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f (x)−Im f (x) =
(−1)m+1

(2m+2)!
(x− xi−1)

m+1(xi− x)m+1 d2m+2 f
dx2m+2 (η). (9)

These formulas show that the error is significantly smaller near the endpoints of the
interval, and allows one to compute an accurate artificial dissipation coefficient in a
modified equation approximation to the discrete evolution; see [3, 20] for details.

Smoothing properties
A fundamental feature of piecewise Hermite interpolation is the following
minimization property in the Hm+1 seminorm,

|w|2m+1 ≡
∫ xN

x0

(
dm+1w
dxm+1

)2

dx. (10)

Theorem 3. Suppose g is any function in Hm+1(x0,xN) satisfying
d jg
dx j (xi) =

d j f
dx j (xi), j = 0, . . . ,m, i = 0, . . . ,N. Then |Im f |m+1 ≤ |g|m+1.

This result holds locally on each interval and follows from the fact that pi(x) is
orthogonal in the Hm+1 semi-inner product to any function w(x) satisfying
d jw
dx j (xi−1) =

d jw
dx j (xi) = 0, j = 0, . . . ,m. In fact by the Pythagorean Theorem

| f |2m+1 = |Im f |2m+1 + | f −Im f |2m+1. (11)

These smoothing results are used to prove the stability of Hermite methods and
establish optimal convergence results; see [16] and the discussion below.

Application to nonsmooth functions
The aforementioned smoothing properties of Hermite interpolation are also
beneficial when dealing with nonsmooth functions. For example consider the
canonical model of a shock wave, the step function q(x) =−sign(x). Let Q(x) be
the Hermite interpolant of degree 2m+1 of q(x) on x ∈ [−1,1]. It is
straightforward to prove (see [3]) that Q(x) is monotone and thus the total variation
of Q(x) is identical to the total variation of q(x). The first 20 Hermite interpolants
are displayed in Figure 2. A well-known result due to Bernstein is that the
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Fig. 2 Hermite interpolating polynomials of degree 2m + 1,m = 1, . . . ,20 of the step function
q(x) =−sign(x) (to the left) and the absolute value function |x| (to the right.)
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sequence of Lagrange interpolation polynomials for |x| at equally spaced nodes in
x ∈ [−1,1] diverges everywhere, except at zero and the end-points. As can be seen
in Figure 2 Hermite interpolation does considerably better. In fact, one can check
that the degree 2m+1 Hermite interpolant for |x| coincides with the polynomial

b(x) =
m

∑
k=0

(
2k
k

)
(−1)k+1(x2−1)k

22k(2k−1)
,

which, in turn, is identical to the first terms of the generalized binomial expansion

(1+ t)
1
2 =

∞

∑
k=0

(
1/2

k

)
tk,

when we set t = x2−1 (note that |x|= (x2)
1
2 ). The sequence of Hermite

interpolation polynomials thus do converge in |x|< 1.

3 A Hermite-Taylor method for solving ut +ux = 0

We now describe how the approximate solution of a PDE can be found using
Hermite interpolation combined with Taylor series approximation in time. The
algorithms are implemented in the Matlab files Hermite_Taylor_1Ddriver.m,
Advection1D_PDE.m and Advection1D_INIT.m which can be downloaded from
chides.org.
Consider the scalar advection equation with periodic boundary conditions:

∂v(x, t)
∂ t

+ c
∂v(x, t)

∂x
= 0, x ∈ [xl ,xr], t > 0, (12)

v(x,0) = v0(x), v(xl , t) = v(xr, t). (13)

The first step in our method (implemented in Hermite_Taylor_1Ddriver.m) is to
define the primal and dual grids with nx +1 and nx grid-points covering the
computational domain

xi = xl + ihx, hx = (xr− xl)/nx, (14)

with i = 0, . . . ,nx for the primal grid and i = 1/2, . . . ,nx−1/2 for the dual grid.
Next, we initialize the degrees-of-freedom used to describe the approximate
solution, which are approximations to scaled derivatives of the solution of orders
0, . . . ,m, or equivalently scaled coefficients of the degree-m Taylor polynomial. At
t = 0 the piecewise degree-2m+1 Hermite interpolant u(x,0) is determined by:

cl =
hl

x

l!
dlu(x,0)

dxl

∣∣∣∣
x=xi

≈ hl
x

l!
dlv0

dxl

∣∣∣∣
x=xi

.
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The data to be evolved is stored as an array of coefficients; u(l,k,i) holds the
coefficient cl of the kth field at the grid-point xi. We obtain these basic
degrees-of-freedom directly from the initial data. In the example in
Advection1D_INIT.m we use v0(x) = sin20πx and may compute the coefficients
directly, but in general we can find them by solving a local interpolation problem at
each grid-point.
To evolve the approximate solution in time, we choose a time step ∆ t satisfying the
CFL condition

c∆ t < hx. (15)

Note that the degree m does not appear in this relation. We now form space-time
polynomials centered at a grid-point on the dual grid and at time tn (initially tn = 0)

un
i+ 1

2
(x, t) =

2m+1

∑
l=0

q

∑
s=0

dls

(
x− xi+ 1

2

hx

)l(
t− tn

∆ t

)s

. (16)

At time t = tn this expression reduces to

un
i+ 1

2
(x, tn) =

2m+1

∑
l=0

dl0

(
x− xi+ 1

2

hx

)l

, (17)

where the coefficients dl0 in (17) are determined so that (17) is the Hermite
interpolant of the data at the adjacent primal nodes.
To find the remaining coefficients dls we repeatedly differentiate (12) in space and
time:

∂ l+sv
∂xl∂ ts =−c

∂ l+sv
∂xl+1∂ ts−1 , (18)

and insist that our approximation u satisfy (18). In particular, note that at (xi+ 1
2
, tn)

the following relation holds

dls =
hl

x

l!
∆ ts

s!
∂ l∂ su
∂xl∂ ts

∣∣∣∣
x=x

i+ 1
2
,t=tn

, (19)

which together with (18) yields the recursion

dls =−c
l +1

s
∆ t
hx

dl+1s−1, l = 0, . . . ,2m+1, s = 1, . . . ,q = 2m+2. (20)

Thus, the coefficients dls are updated recursively. Once the
“time-derivative-coefficients” are known we can simply update the approximation
at the dual grid-point at the next half time level by evaluating

∂ lun
i+ 1

2

∂xl (x, tn +∆ t/2), l = 0, . . . ,m,
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Table 2 Error data for the evolution of v0(x) = sin20πx for different methods and final times.

Final time m nx # time steps l2-error Final time m nx # time steps l2-error
1 1 2000 2222 1.92(-6) 1000 5 20 22222 3.89(-3)
1 5 21 23 2.04(-6) 1000 15 5 5556 9.87(-8)
1 11 6 7 3.73(-7) 1000 25 4 4444 1.16(-9)

Repeating the procedure at the next half time level and using the periodic boundary
conditions completes a full time step.
To demonstrate the method we run Hermite_Taylor_1Ddriver.m with the initial
data v0(x) = sin20πx. The computational domain is x ∈ [0,1]; thus there are 10
wavelengths inside the computational domain. We choose two different final times:
1 and 1000. This corresponds to waves traveling 10 and 10000 wavelengths
respectively. The results for some different combinations of m, nx with the ratio
∆ t
hx

= 9
10 are shown in Table 2. The table clearly demonstrates the benefits of using

a very high order method; for example using a method of order 51 on a grid with
0.4 grid-points per wavelength to evolve the solution 10000 wavelengths using
only 4444 timesteps the error is 1.16 ·10−9.
As a second example we evolve a square wave using nx = 8 and m = 5,15,25,
yielding l2-errors: 2.99(-2), 4.66(-3) and 6.13(-4) at the final time 10. The
approximation and errors are displayed in Figure 3. As the solution is nonsmooth
we cannot expect convergence at the full order of the method; see [3] where a
discussion of the expected convergence behavior based on a modified equation is
given. Despite this we still see a big improvement when a high order method is
used.

Convergence analysis
The analysis of convergence for the Hermite-Taylor method implemented above
follows from the smoothing and convergence properties of Hermite interpolation
combined with the observation that so long as (15) holds the updated Taylor
polynomial at the cell center is in fact the Taylor expansion of the exact solution of
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Fig. 3 Left: The square wave (x>0.25).*(x<0.75)-0.5 at time 10 using nx = 8 and
m = 5, 15, 25. The crosses mark the location of the grid points. Right: The error at time 10 as
a function of x for the three different choices of m.
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the evolution problem over the half time step. Thus we may succinctly express the
algorithm as:

un+1/2
h = ĨmS(∆ t/2)un

h, un+1
h = ImS(∆ t/2)un+1/2

h ,

where S denotes the exact solution operator for the PDE - in this case simply
translation by c∆ t/2. Since S preserves the Hm+1-seminorm we immediately
conclude from (11) that

|un
h|m+1 ≤ |u0

h|m+1, (21)

establishing stability2. We can then obtain a slightly suboptimal error estimate in
the seminorm by combining (11) and the error bound obtained by taking m+1
derivatives of (7). Let u(x, t) represent the true solution and en = u−un

h,
en+1/2 = u−un+1/2

h represent the errors. Then

en+1/2 = S(∆ t/2)u(·, tn)− ĨmS(∆ t/2)un
h (22)

= ĨmS(∆ t/2)en +u(·, tn+1/2)− Ĩmu(·, tn+1/2)

en+1 = S(∆ t/2)u(·, tn+1/2)−ImS(∆ t/2)un+1/2
h (23)

= ImS(∆ t/2)en+1/2 +u(·, tn+1)−Imu(·, tn+1),

which implies

|en+1/2|2m+1 ≤ |en|2m+1 +O(h2m+2
x ), |en+1|2m+1 ≤ |en+1/2|2m+1 +O(h2m+2

x ).

Tracking these inequalities shows that |en|m+1 = O(hm+1/2
x ). In fact this argument

can be refined to prove the optimal error estimate [16]:

Theorem 4. There exists a constant, C(T ), independent of hx and the initial data
u(x,0) such that for all n≤ T

∆ t

‖en‖L2 ≤Ch2m+1
x ‖u(·,0)‖2m+2. (24)

It is also shown in [16] that the result holds in general for constant coefficient
symmetric hyperbolic systems in any number of space dimensions. It can also be
generalized to variable coefficients and inexact time stepping so long as the local
time stepping schemes are sufficiently accurate.

4 Incorporating nonlinearity

For nonlinear PDEs it is often more efficient to use a one-step ODE solver than the
Taylor series approach used above. In particular, using Taylor series requires the

2 We must also use the fact that the average value of the solution remains constant.
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repeated differentiation in time of the PDE, spawning many new terms. In contrast
a standard ODE solver just requires the computation of a single time derivative.
Assume we have found the Hermite interpolant at a dual grid-point xi+ 1

2
but rather

than expanding in time let the coefficients dl be time dependent functions

un
i+ 1

2
(x, t) =

2m+1

∑
l=0

dl(t)

(
x− xi+ 1

2

hx

)l

. (25)

For a PDE vt = f (v) we can insert (25):

∂un
i+ 1

2
(x, t)

∂ t
=

2m+1

∑
l=0

d
′
l(t)

(
x− xi+ 1

2

hx

)l

= f (un
i+ 1

2
(x, t)). (26)

As before we can differentiate in space and evaluate at x = xi+ 1
2

to find

k!
hk

x
d
′
k(t) =

∂ k

∂xk f (un
i+ 1

2
(x, t))

∣∣∣
x=x

i+ 1
2

. (27)

To avoid the differentiation of the right hand side we first approximate
f (un

i+ 1
2
(x, t)) by a Taylor polynomial of degree 2m+1

f (un
i+ 1

2
(x, t))≈

2m+1

∑
l=0

bl(t)

(
x− xi+ 1

2

hx

)l

, (28)

for which differentiation is straightforward. With this approximation and after
carrying out the differentiation in (27) we obtain the local system of ODEs

d
′
k(t) = bk(t), k = 0, . . . ,2m+1, (29)

that can be solved to evolve our approximate solution. Of course, this requires us to
first find the Taylor coefficients bk(t).
The precise way to compute bk(t) depends on the composition of f . For example,
for the nonlinearity vvx encountered, e.g., in Burgers’ equation vt + vvx = εvxx, we
may first compute the derivative

vx ≈
2m+1

∑
l=1

l
hx

dl(t)

(
x− xi+ 1

2

hx

)l

, (30)

followed by a polynomial multiplication truncated to degree 2m+1. This example
is implemented in Burgers1D_PDE.m and discussed in detail below.
For more general non-linearities we can use techniques for finding recursions for
Taylor series. Let f (x),w(x) and u(x) have Taylor series around some base point
with coefficients Fk,Wk and Uk. Then, for non-linearities which satisfy the
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differential equation f
′
(x) = w(x)u

′
(x) (w is a function of f , u or both) we can

directly compute the coefficients Fk,k = 1,2, . . . using the formula [24]

Fk =W0Uk +
1
k

k−1

∑
j=0

jU jWk− j. (31)

For example, if f = exp(u) we have f
′
(x) = f (x)u

′
(x) and thus w = f . We start the

recursion with F0 = exp(U0).
Thus, for general conservation laws in the form vt +( f (v))x we may first use (31)
to find a truncated Taylor series followed by differentiation (by the formula (30))3.

A Hermite-Runge-Kutta solver for vt + vvx = εvxx
To make things concrete we now consider the approximate solution to viscous
Burgers’ equation using the approach outlined above. We evolve the local system
of ODEs (29) using the classic fourth order Runge-Kutta method. The driver
routine is called Hermite_RK_1Ddriver.m and the routines for the PDE and the
initial data are Burgers1D_PDE.m and Burgers1D_INIT.m.
The nonlinearity in the PDE is handled as outlined above, we first differentiate and
then perform a polynomial multiplication (in the code this is done using Matlab’s
built-in polynomial multiplication routine conv.)
The driver Hermite_RK_1Ddriver.m is nearly the same as the driver for the
Hermite-Taylor method. As before the initial data is set up in a separate file, here in
Burgers1D_INIT.m. As an example we choose the initial data to be

Table 3 Errors at time 0.2 (left) and 0.35 (right) for Burgers equation for different order methods.

nx 7 9 11 13 15
Error, m = 3 3.7(-3) 1.2(-3) 4.0(-4) 1.3(-4) 4.6(-5)
Rate 4.4 5.5 6.6 7.5
Error, m = 5 5.5(-4) 8.2(-5) 2.1(-5) 7.8(-6) 2.9(-6)
Rate 7.6 6.8 5.9 6.9
Error, m = 7 1.5(-4) 2.1(-5) 3.4(-6) 5.5(-7) 8.4(-8)
Rate 7.8 9.0 10.8 13.2

nx 15 35 55 75 95
m = 3 6.3(-2) 2.3(-2) 5.6(-3) 1.2(-3) 2.2(-4)
Rate 1.2 3.1 5.0 7.0
m = 5 9.6(-2) 1.2(-2) 8.5(-4) 2.1(-5) 1.5(-5)
Rate 2.4 5.9 12.0 1.4
m = 7 7.6(-2) 3.9(-3) 9.6(-5) 1.1(-5) 6.8(-7)
Rate 3.5 8.2 7.1 11.6

v(x,0) =−sin(πx) on the domain x ∈ [−1,1] and ε = 0.02. This data develops into
a shock-like sharp transition around time 0.3 so we evaluate the error at 0.2, well
before the formation time, and at 0.35, just after the shock forms. In order to
maintain stability for this nonlinear problem we reduce ∆ t

hx
to 0.1 and take a single

Runge-Kutta substep. We vary the resolution using methods of order 7, 11 and 15;
see the results in Table 3. The rate of convergence is not quite at the spatial design
order, most likely due to the fourth order accurate time stepper.

3 Conservation can be enforced when we interpolate, but we have not yet experimented with this
approach.
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Tol 1.0(-2) 1.0(-3) 1.0(-4) 1.0(-5) 1.0(-6) 1.0(-7) 1.0(-8) 1.0(-9) 1.0(-10) 1.0(-11) 1.0(-12)
l2-error 1.1(-1) 8.2(-3) 1.5(-3) 1.5(-6) 1.7(-7) 1.6(-9) 3.3(-10) 1.8(-12) 4.2(-14) 1.1(-14) 1.0(-14)

Table 4 Actual errors in the computed solutions for various tolerances for the adaptive Hermite-
Runge-Kutta method applied to viscous Burgers’ equation.

p-adaptivity
For problems with highly localized features it is often useful to employ adaptive
methods. Methods based on Hermite interpolation can be enhanced with both p and
H adaptivity and, in particular, incorporating p-adaptivity is quite straightforward.
Noting that the above descriptions of the methods are local in the sense that we
only require m derivatives at two adjacent nodes in order to evolve the solution a
half time step, and also noting that Theorem 3 holds locally, we can allow m to
vary spatially choosing mloc = min(mi,mi+1) when we form the Hermite
interpolant at xi+1/2. The driver routine Padapt_Hermite_RK_1Ddriver.m
illustrates how natural it is to incorporate p-adaptivity.
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Fig. 4 In the left and middle figures the white line denotes the number of derivatives in the adaptive
method that were used at the final time. The contour plot is the base 10 logarithm of the coefficients
stored in u. The left figure corresponds to tol = 1e-4 and the middle to tol = 1e-12. To
the right the computed solution (black line behind the red line), the exact solution (red) and the
solution at the 31 nodes (black circles) are displayed.

Taking mmax = 25 we compute the solution to the Burgers example using various
tolerances. As can be seen from the results displayed in Table 4 the algorithm
yields solutions with l2-errors roughly at the level of the selected tolerance.
In Figure 4 we display the solution at the end time 0.35 and the distribution of the
number of derivatives used in the computation. Note that in order to meet the strict
tolerance 10−12 we need to use m = 25, i.e. a method of order 51 around the shock.

5 Hermite-Taylor methods for systems in multiple dimensions

As a concrete example of a system of PDEs in multiple dimensions we consider
Maxwell’s equations in transverse magnetic form
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µHx
t =−Ez

y, µHy
t = Ez

x, εEz
t = Hy

x −Hx
y , (32)

on a rectangular domain (x,y) ∈ [xl ,xr]× [yb,yt ]. To illustrate how simple boundary
conditions can be imposed by a mirroring principle we consider the case where the
boundary is a perfect electric conductor, i.e. Ez = 0. Then from (32) it is clear that
that Hx = 0 and Hy

x = 0 on x = xl ,xr and Hy = 0 and Hx
y = 0 on y = yb,yt .

The discretization of (32) is a direct generalization of the one dimensional
Hermite-Taylor method on a staggered grid consisting of a primal grid:

(xi,y j)= (xl+ihx,yb+ jhy), (i, j)∈ [0,nx]×[0,ny], hx =(xr−xl)/nx, hy =(yt−yb)/ny,

and a dual grid

(xi+1/2,y j+1/2)= (xl+(i+1/2)hx,yb+( j+1/2)hy), i= 0, . . . ,nx−1, j = 0, . . . ,ny−1.

The method starts with the tensor product polynomials

ui, j,kvar(x,y, t0) =
m

∑
lx=0

m

∑
ly=0

clx,ly,kvar

(
x− xi

hx

)lx(y− y j

hy

)ly
, (33)

where ui, j,kvar(x,y, t0), kvar = 1,2,3 approximate Hx,Hy and Ez.
As in one dimension, the first step in the method is to form the Hermite interpolant
at a dual node

ui+ 1
2 , j+

1
2 ,kvar

(x,y, t0) =
2m+1

∑
lx=0

2m+1

∑
ly=0

dlx,ly,kvar

(
x− xi

hx

)lx(y− y j

hy

)ly
. (34)

Algorithmically, these polynomials are formed by applying the one dimensional
interpolation to all y-derivatives at the bottom and top of a cell (see
get_tcofs1_2D). and interpolating the resulting x-derivatives to the cell center.
The interpolated data is evolved by the Taylor series technique and the time
derivative coefficients are computed in Maxwell2D_PDE. At the end of the first half
time step the solution is known on all the dual nodes inside the boundary.
Evolution of the approximate solution at the primal nodes inside the boundary is
carried out as described above. At the primal nodes on the boundary we form the
Hermite interpolating polynomial by first extending the solution from interior dual
nodes to ghost nodes just outside the boundary. The extension is done in such a
way that the resulting interpolant is even or odd (depending on the boundary
conditions, see Maxwell2D_PDE).

Table 5 Errors and convergence rates for the Maxwell TM cavity problem with ωx = 4π , ωy = 8π .

m = 5 hx 1.0 6.7(-1) 5.0(-1) 4.0(-1) m = 10 1.0 6.7(-1) 5.0(-1) 4.0(-1)
l2-error 2.1(0) 3.3(-1) 1.8(-2) 3.4(-3) 9.6(-4) 3.2(-7) 8.8(-10) 1.1(-11)
Rate 4.5 10.1 7.5 19.8 20.5 19.7
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To demonstrate the method we set µ = 1 and ε = 1, then in the cavity
(x,y) ∈ [−1,1]2 a solution to the TM problem is

Hx = −ωy/ωt sin(ωxx)cos(ωyy)sin(ωtt), (35)
Hy = ωx/ωt cos(ωxx)sin(ωyy)sin(ωtt), (36)
Ez = sin(ωxx)sin(ωyy)sin(ωtt), (37)

with ωt =
√

ω2
x +ω2

y .
We use this solution as initial data and evolve until time 3 and measure the error in
the l2-norm. As we choose 2ωx = ωy we also use 2hx = hy and set the time step as
dt = CFL*min(hx,hy) with CFL = 0.9. The results, listed in Table 5, show a

rate of convergence almost at the design rate.

6 Extensions and other work

Simulations of Compressible Flows: The first steps in constructing a
compressible Navier-Stokes solver appear in the thesis of Dodson [15]. More
recently we have been using the method to simulate compressible mixing layers,
with an eye towards applications in aeroacoustics [17, 2, 1, 19].

Adaptive Implementations: The ease of incorporating p-adaptivity in Hermite
methods is another of its attractive features, with the basic idea in one and two
space dimensions explored in [8] and illustrated in the example above. We have
also carried out preliminary studies of an h-adaptive version in [1]. Here we
advocate quadtree/octree refinement of the Hermite cells with local time
stepping. We believe that the stability of the resulting method follows directly
from dissipativity of piecewise Hermite interpolation.

Dispersion and Dissipation: The dispersion and dissipation properties of
Hermite methods in one and two space dimensions are studied in [3, 19, 20]. A
conclusion is that the method is quite competitive in terms of cost with other
high-order structured grid discretizations, particularly if large time steps are
taken. Note that the primary errors are dissipation errors which occur when the
the data is interpolated. Thus the method is most accurate (and most efficient) if
the global time step is taken to be as large as possible while maintaining
stability. Thus in the Runge-Kutta framework we suggest using as many
substeps as needed to maintain accuracy and stability with a large global step.

Coupling with Other Methods: A drawback of Hermite methods is their
reliance on structured grids and the need to utilize the PDE and geometry
description to derive equations for normal derivatives at boundaries. To make
the method more flexible we have implemented coupled Hermite-DG solvers on
hybrid structured-unstructured grids [7]. Here the DG method obtains fluxes
from the solution in neighboring Hermite cells, while Hermite cells bordering
DG elements obtain data by interpolation. We adapt the local time stepping to
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the requirements of each method, so at high order we take many steps within the
DG elements for each Hermite step. Using dissipative upwind DG schemes we
have experimentally found the method to be quite robust.

Of course we are not the only researchers to have used Hermite interpolation to
solve differential equations. Hermite-based finite element methods have been
studied for quite some time, in particular for problems posed in spaces H2 or
higher [10]. Among the first applications to hyperbolic equations can be found in
the work of Yabe and collaborators [27]. More recently, Nave, Rosales, and
Seibold have used Hermite interpolation to solve advection problems, with a
particular interest in using the Hermite-based advection solver in conjunction with
level set methods [23, 25, 9]. They term the methods jet schemes borrowing
terminology from differential geometry. These methods differ from the one
presented here in that a staggered mesh is not employed.
Hermite interpolation has also been proposed by Butcher as a way to construct
SDIRK methods for solving stiff systems of ordinary differential equations [6].
The methods are explicitly interpreted as collocation methods employing the
Hermite interpolant by Mülthei [22].
To conclude we recall a quote from Davis [13]: “Hermite’s formulas are
rediscovered and republished every four years.” We hope we have demonstrated to
the reader the unique and useful properties of Hermite interpolants and their
potential use for solving differential equations. We also wish to encourage the use
of the codes in chides.org and invite any feedback for their improvement.
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