.. _navierstokes: ---------------------------------------- The compressible Navier-Stokes equations ---------------------------------------- In two dimensions the compressible Navier-Stokes equations can be written as .. math:: :nowrap: \begin{equation} \vec{Q}_t + \frac{\partial}{\partial x}(\vec{f}(\vec{Q})+\vec{F}(\vec{Q})) + \frac{\partial}{\partial y} (\vec{g}(\vec{Q})+\vec{G}(\vec{Q})) = 0. \end{equation} Where the conservative state variables are :math:`\vec{Q} = [\rho, \rho u, \rho v, E]^T` and the hyperbolic fluxes are .. math:: :nowrap: \begin{equation} \vec{f}(\vec{Q}) = \left( \begin{array}{c} \rho u\\ \rho u^2 + p \\ \rho u v \\ u (E+p) \end{array} \right), \ \ \ \vec{g}(\vec{Q}) = \left( \begin{array}{c} \rho v\\ \rho u v \\ \rho v^2 + p \\ v (E+p) \end{array} \right) \end{equation} Here we assume an equation of state :math:`p = (\gamma-1) \rho e` and note that we can relate :math:`E` and :math:`p` through :math:`\rho e = E - \rho (u^2+v^2)/2`. The viscous fluxes are: .. math:: :nowrap: \begin{equation} \vec{F}(\vec{Q}) = - \left( \begin{array}{c} 0\\ \frac{4 \mu}{3} u_x+(\frac{\mu}{3}+\mu_b) v_y \\ \mu (u_y+v_x) \\ u F_2 + v F_3 + \frac{\mu \gamma}{Pr} T_x \end{array} \right), \ \ \ \vec{G}(\vec{Q}) = - \left( \begin{array}{c} 0\\ \mu (u_y+v_x) \\ \frac{4 \mu}{3} v_y + (\frac{mu}{3} + \mu_b) u_x\\ u G_2 + v G_3 + \frac{\mu \gamma}{Pr} T_y \end{array} \right). \end{equation} Here :math:`\rho` is the density, :math:`(u,v)` is the velocity vector, :math:`E` is the total energy, :math:`e` is the specific internal energy, :math:`\mu` is the dynamic shear viscosity, :math:`\mu_b` is the bulk viscosity, :math:`\gamma` is the ratio of specific heats, :math:`Pr` is the Prandtl number, :math:`T = (\gamma-1)e/R` is the temperature and :math:`R` is the gas constant. Isentropic vortex +++++++++++++++++ Couette flow ++++++++++++ Lid driven cavity +++++++++++++++++ A pair of vortices +++++++++++++++++++